Produkt zum Begriff Zellkultur:
-
Einschraubheizkörper Nanotechnologie
Einschraubheizkörper 2/3/3,5/4kW mit moderner Graphen Nanotechnologie 30% effizienter Nano Einschraubheizkörper werden mit einer speziellen Technologie aus Deutschland hergestellt, die Energieeinsparung liegt hier bei 30-40% gegenüber herkömmlichen Heizstäben und gleichzeitig bietet dieser eine erhöhte Lebensdauer bis zu 10 Jahren. Sie eignen sich für die Erwärmung von Wasser, Öl, Säuren und Laugen, sind kalkfrei, säure- und laugenbeständig, haben eine hohe elektrische Heizleistung und eine schnelle Heizgeschwindigkeit. Graphen Nano Technologie 1000 mal Leitfähiger als Kupfer Nanoheizstäbe wandeln elektrische Energie über 30% effizienter in Wärme als gewöhnliche Heizkörper oder Heizsysteme. Sie arbeiten von 12V bis 240V Netzspannung und eignen sich somit für vielfältige Anwendungen. Die neue Technologie sind die elektrisch angeregten Kohlenstoff-Nano-Röhrchen von 4-6 nm Durchmesser (1 nm entspricht 1 Billionstel Meter) und sind in höchstem Maße elektrisch leitend, tausendmal leitfähiger als Kupfer und können als Wärmeleiter fungieren. Diese Widerstände sind in der Lage, elektrische Energie mit nahezu 100%iger Effizienz in Wärme umzuwandeln. Nano-Röhrchen werden in einem speziellen Verfahren einseitig als eine Glasröhre aufgedampft welches als Träger dient. Wie kann kann es sein das ein Nano Heizelement effizienter ist als Kupfer obwohl beide die selbe Leistung haben? Obwohl Graphen-Heizelemente und traditionelle Heizstäbe beide mit elektrischem Strom betrieben werden, gibt es einige grundlegende Unterschiede, die Graphen-Heizelemente effizienter machen: 1. Schnelle Aufheizzeit: * Graphen: Aufgrund seiner außergewöhnlichen Wärmeleitfähigkeit heizt Graphen nahezu instantan auf. Das bedeutet, dass das Wasser schneller erwärmt wird und weniger Energie verschwendet wird. * Traditionelle Heizstäbe: Diese benötigen in der Regel länger, um ihre Betriebstemperatur zu erreichen, was zu Energieverlusten führt. 2. Gleichmäßige Wärmeverteilung: * Graphen: Die Wärme wird in Graphen-Heizelementen gleichmäßig über die gesamte Oberfläche verteilt. Dadurch wird verhindert, dass sich Kalkablagerungen bilden und die Effizienz des Elements verringern. * Traditionelle Heizstäbe: Bei Heizstäben konzentriert sich die Wärme oft nur auf bestimmte Bereiche, was zu einer ungleichmäßigen Erwärmung und einer höheren Wahrscheinlichkeit von Kalkablagerungen führt. 3. Längere Lebensdauer: * Graphen: Graphen ist äußerst korrosionsbeständig und langlebig. Es ist weniger anfällig für Schäden durch Kalk oder andere Ablagerungen. * Traditionelle Heizstäbe: Heizstäbe können durch Korrosion und Ablagerungen im Laufe der Zeit an Leistung verlieren und müssen häufiger ersetzt werden. 4. Kompakte Bauweise: * Graphen: Graphen-Heizelemente können sehr dünn und flexibel hergestellt werden. Das ermöglicht kompaktere und effizientere Warmwasserspeicher. * Traditionelle Heizstäbe: Diese sind oft größer und unflexibler, was die Gestaltungsmöglichkeiten einschränkt. 5. Energieeffizienz: * Graphen: Durch die schnelle Aufheizzeit, die gleichmäßige Wärmeverteilung und die lange Lebensdauer sind Graphen-Heizelemente insgesamt energieeffizienter. * Traditionelle Heizstäbe: Aufgrund der oben genannten Faktoren sind sie in der Regel weniger energieeffizient. Zusammenfassend: Obwohl sowohl Graphen-Heizelemente als auch traditionelle Heizstäbe mit Strom betrieben werden, ist die Art und Weise, wie die Wärme erzeugt und übertragen wird, grundlegend unterschiedlich. Die einzigartigen Eigenschaften von Graphen machen es zu einem überlegenen Material für Heizelemente, da es eine schnellere, gleichmäßigere und effizientere Erwärmung ermöglicht. Flexible Heizsteuerung Es ist möglich den Heizstab nur zur Hälfte zu beheizen (vordere oder hintere) Hierzu müssen Sie die Brücke entnehmen und können so den vorderen Teil oder hinteren Teil ansteuern. Top Features Der thermische Wirkungsgrad des Nano-Heizrohrs erreicht 98%. Es spart 30%-40% mehr Strom als herkömmliche elektrische Heizrohre. Doppelter Leckageschutz Keine Magnetfeldbildung Lange Lebensdauer Hydroelektrische Trennung Hygienisch einwandfrei Unbeheizte Totzone nach Gewinde 5cm Leistung auf 50% reduzierbar (ohne Brücke) table { width: 100%; border-collapse: collapse; } thead { display: none; } tr { display: block; margin-bottom: 1em; } td { display: block; text-align: right; padding: 8px; border: 1px solid #ccc; } td::before { content: attr(data-label); float: left; font-weight: bold; } @media (min-width: 600px) { table { display: table; } thead { display: table-header-group; } tr { display: table-row; } td { display: table-cell; text-align: left; } td::before { content: ""; display: none; } } Technische Daten Leistung Gesamtlänge Länge des Heizelements (inkl. Gewinde) Durchmesser Gewinde 2 KW 45cm 39cm 3,5cm 1,5" 3 KW 44cm 38cm 3,5cm 1,5" 3,5 KW 47cm 40cm 5cm 2" 4 KW 47cm 40cm 5cm 2"
Preis: 90.00 € | Versand*: 0.00 € -
AEG LED Außenstehleuchte KUBUS anthrazit Nanotechnologie 8W 800lm 3000K Warmweiß...
Hersteller: AEG Farbe: anthrazit/weiß Material: Aluminium/Kunststoff Netzspannung: 220-240V Länge: 161 mm Breite: 161 mm Höhe: 211 mm Schutzart: IP65 Schutzklasse: I Sockel: LED Leuchtmittel Typ: LED Anzahl Leuchtmittel: 1 Leuchtmittel inkl.: ja Leuchtmittel fest: ja Leuchtmittel wechselbar: nein Dimmbar: nein Besonderheiten: mit Nanotechnologie Leuchtmittelangaben: Watt: 8W Lumen: 800lm Kelvin: 3000K Lichtfarbe: Warmweiß Schaltzyklen: 15000 Lebenszeit in Std.: 30000 Energieeffizienzklasse: F <p class...
Preis: 49.95 € | Versand*: 4.95 € -
SAT Nano-Universalsatz Nano SADANANOUNI
SAT Nano-Universalsatz Nano SADANANOUNI
Preis: 17.90 € | Versand*: 11.90 € -
SAT Nano Universalreiniger Nano NANOCUNI
SAT Nano Universalreiniger Nano NANOCUNI
Preis: 9.90 € | Versand*: 11.90 €
-
Wofür wird Zellkultur in der medizinischen Forschung und Arzneimittelentwicklung eingesetzt? Kann Zellkultur auch für die Herstellung von Geweben und Organen verwendet werden?
Zellkultur wird in der medizinischen Forschung und Arzneimittelentwicklung verwendet, um die Wirkung von Medikamenten auf Zellen zu testen und Krankheiten zu erforschen. Ja, Zellkultur kann auch für die Herstellung von Geweben und Organen verwendet werden, um beispielsweise Haut oder Knorpel zu züchten. Dies wird als Tissue Engineering bezeichnet.
-
Wie werden Zellen für die Zellkultur gewonnen und kultiviert?
Zellen werden durch verschiedene Methoden wie Gewebeproben, Blutentnahmen oder Zelllinien gewonnen. Nach der Isolierung werden die Zellen in einem Nährmedium kultiviert und unter optimalen Bedingungen wie Temperatur, Feuchtigkeit und Nährstoffversorgung gehalten. Die Zellen werden regelmäßig überprüft, subkultiviert und für Experimente oder medizinische Anwendungen verwendet.
-
Wie kann Zellkultur zur Erforschung von Krankheiten und Medikamentenentwicklung eingesetzt werden?
Zellkultur ermöglicht die Untersuchung von Zellen unter kontrollierten Bedingungen im Labor, um Krankheitsmechanismen zu erforschen. Durch die Verwendung von Zellkulturen können potenzielle Medikamente auf ihre Wirksamkeit und Sicherheit getestet werden. Zellkulturen dienen als Modellsysteme, um die Wirkung von Medikamenten auf menschliche Zellen zu untersuchen und neue Therapien zu entwickeln.
-
Welche Anwendungen und Potenziale haben Nanostrukturen in der modernen Materialforschung?
Nanostrukturen haben Anwendungen in der Entwicklung von leichten und dennoch robusten Materialien für den Einsatz in der Luft- und Raumfahrt sowie im Bauwesen. Sie ermöglichen die Herstellung von effizienteren Solarzellen und verbesserten medizinischen Implantaten. Darüber hinaus können Nanostrukturen in der Elektronikindustrie zur Herstellung von kleineren und leistungsstärkeren Geräten eingesetzt werden.
Ähnliche Suchbegriffe für Zellkultur:
-
Nano
2in1-Universal-Fernbedienung "Nano", programmierbar, für TV und Streaming
Preis: 17.96 € | Versand*: 6.96 € -
NANO NANO T-Shirt Women, white, XL
Cool geschnittenes Basic-T-Shirt für Damen ohne Label im Nacken, mit weitem Ausschnitt und Seitennähten, aus superleichtem Baumwoll-Single-Jersey, 100 % ringgesponnene Baumwolle, Single-Jersey
Preis: 1.33 € | Versand*: 6.79 € -
Einschraubheizkörper Nanotechnologie 230V / 3,5 kW / 2"
Einschraubheizkörper 2/3/3,5/4kW mit moderner Graphen Nanotechnologie 30% effizienter Nano Einschraubheizkörper werden mit einer speziellen Technologie aus Deutschland hergestellt, die Energieeinsparung liegt hier bei 30-40% gegenüber herkömmlichen Heizstäben und gleichzeitig bietet dieser eine erhöhte Lebensdauer bis zu 10 Jahren. Sie eignen sich für die Erwärmung von Wasser, Öl, Säuren und Laugen, sind kalkfrei, säure- und laugenbeständig, haben eine hohe elektrische Heizleistung und eine schnelle Heizgeschwindigkeit. Graphen Nano Technologie 1000 mal Leitfähiger als Kupfer Nanoheizstäbe wandeln elektrische Energie über 30% effizienter in Wärme als gewöhnliche Heizkörper oder Heizsysteme. Sie arbeiten von 12V bis 240V Netzspannung und eignen sich somit für vielfältige Anwendungen. Die neue Technologie sind die elektrisch angeregten Kohlenstoff-Nano-Röhrchen von 4-6 nm Durchmesser (1 nm entspricht 1 Billionstel Meter) und sind in höchstem Maße elektrisch leitend, tausendmal leitfähiger als Kupfer und können als Wärmeleiter fungieren. Diese Widerstände sind in der Lage, elektrische Energie mit nahezu 100%iger Effizienz in Wärme umzuwandeln. Nano-Röhrchen werden in einem speziellen Verfahren einseitig als eine Glasröhre aufgedampft welches als Träger dient. Wie kann kann es sein das ein Nano Heizelement effizienter ist als Kupfer obwohl beide die selbe Leistung haben? Obwohl Graphen-Heizelemente und traditionelle Heizstäbe beide mit elektrischem Strom betrieben werden, gibt es einige grundlegende Unterschiede, die Graphen-Heizelemente effizienter machen: 1. Schnelle Aufheizzeit: * Graphen: Aufgrund seiner außergewöhnlichen Wärmeleitfähigkeit heizt Graphen nahezu instantan auf. Das bedeutet, dass das Wasser schneller erwärmt wird und weniger Energie verschwendet wird. * Traditionelle Heizstäbe: Diese benötigen in der Regel länger, um ihre Betriebstemperatur zu erreichen, was zu Energieverlusten führt. 2. Gleichmäßige Wärmeverteilung: * Graphen: Die Wärme wird in Graphen-Heizelementen gleichmäßig über die gesamte Oberfläche verteilt. Dadurch wird verhindert, dass sich Kalkablagerungen bilden und die Effizienz des Elements verringern. * Traditionelle Heizstäbe: Bei Heizstäben konzentriert sich die Wärme oft nur auf bestimmte Bereiche, was zu einer ungleichmäßigen Erwärmung und einer höheren Wahrscheinlichkeit von Kalkablagerungen führt. 3. Längere Lebensdauer: * Graphen: Graphen ist äußerst korrosionsbeständig und langlebig. Es ist weniger anfällig für Schäden durch Kalk oder andere Ablagerungen. * Traditionelle Heizstäbe: Heizstäbe können durch Korrosion und Ablagerungen im Laufe der Zeit an Leistung verlieren und müssen häufiger ersetzt werden. 4. Kompakte Bauweise: * Graphen: Graphen-Heizelemente können sehr dünn und flexibel hergestellt werden. Das ermöglicht kompaktere und effizientere Warmwasserspeicher. * Traditionelle Heizstäbe: Diese sind oft größer und unflexibler, was die Gestaltungsmöglichkeiten einschränkt. 5. Energieeffizienz: * Graphen: Durch die schnelle Aufheizzeit, die gleichmäßige Wärmeverteilung und die lange Lebensdauer sind Graphen-Heizelemente insgesamt energieeffizienter. * Traditionelle Heizstäbe: Aufgrund der oben genannten Faktoren sind sie in der Regel weniger energieeffizient. Zusammenfassend: Obwohl sowohl Graphen-Heizelemente als auch traditionelle Heizstäbe mit Strom betrieben werden, ist die Art und Weise, wie die Wärme erzeugt und übertragen wird, grundlegend unterschiedlich. Die einzigartigen Eigenschaften von Graphen machen es zu einem überlegenen Material für Heizelemente, da es eine schnellere, gleichmäßigere und effizientere Erwärmung ermöglicht. Flexible Heizsteuerung Es ist möglich den Heizstab nur zur Hälfte zu beheizen (vordere oder hintere) Hierzu müssen Sie die Brücke entnehmen und können so den vorderen Teil oder hinteren Teil ansteuern. Top Features Der thermische Wirkungsgrad des Nano-Heizrohrs erreicht 98%. Es spart 30%-40% mehr Strom als herkömmliche elektrische Heizrohre. Doppelter Leckageschutz Keine Magnetfeldbildung Lange Lebensdauer Hydroelektrische Trennung Hygienisch einwandfrei Unbeheizte Totzone nach Gewinde 5cm Leistung auf 50% reduzierbar (ohne Brücke) table { width: 100%; border-collapse: collapse; } thead { display: none; } tr { display: block; margin-bottom: 1em; } td { display: block; text-align: right; padding: 8px; border: 1px solid #ccc; } td::before { content: attr(data-label); float: left; font-weight: bold; } @media (min-width: 600px) { table { display: table; } thead { display: table-header-group; } tr { display: table-row; } td { display: table-cell; text-align: left; } td::before { content: ""; display: none; } } Technische Daten Leistung Gesamtlänge Länge des Heizelements (inkl. Gewinde) Durchmesser Gewinde 2 KW 45cm 39cm 3,5cm 1,5" 3 KW 44cm 38cm 3,5cm 1,5" 3,5 KW 47cm 40cm 5cm 2" 4 KW 47cm 40cm 5cm 2"
Preis: 130.00 € | Versand*: 0.00 € -
Einschraubheizkörper Nanotechnologie 230V / 4 kW / 2"
Einschraubheizkörper 2/3/3,5/4kW mit moderner Graphen Nanotechnologie 30% effizienter Nano Einschraubheizkörper werden mit einer speziellen Technologie aus Deutschland hergestellt, die Energieeinsparung liegt hier bei 30-40% gegenüber herkömmlichen Heizstäben und gleichzeitig bietet dieser eine erhöhte Lebensdauer bis zu 10 Jahren. Sie eignen sich für die Erwärmung von Wasser, Öl, Säuren und Laugen, sind kalkfrei, säure- und laugenbeständig, haben eine hohe elektrische Heizleistung und eine schnelle Heizgeschwindigkeit. Graphen Nano Technologie 1000 mal Leitfähiger als Kupfer Nanoheizstäbe wandeln elektrische Energie über 30% effizienter in Wärme als gewöhnliche Heizkörper oder Heizsysteme. Sie arbeiten von 12V bis 240V Netzspannung und eignen sich somit für vielfältige Anwendungen. Die neue Technologie sind die elektrisch angeregten Kohlenstoff-Nano-Röhrchen von 4-6 nm Durchmesser (1 nm entspricht 1 Billionstel Meter) und sind in höchstem Maße elektrisch leitend, tausendmal leitfähiger als Kupfer und können als Wärmeleiter fungieren. Diese Widerstände sind in der Lage, elektrische Energie mit nahezu 100%iger Effizienz in Wärme umzuwandeln. Nano-Röhrchen werden in einem speziellen Verfahren einseitig als eine Glasröhre aufgedampft welches als Träger dient. Wie kann kann es sein das ein Nano Heizelement effizienter ist als Kupfer obwohl beide die selbe Leistung haben? Obwohl Graphen-Heizelemente und traditionelle Heizstäbe beide mit elektrischem Strom betrieben werden, gibt es einige grundlegende Unterschiede, die Graphen-Heizelemente effizienter machen: 1. Schnelle Aufheizzeit: * Graphen: Aufgrund seiner außergewöhnlichen Wärmeleitfähigkeit heizt Graphen nahezu instantan auf. Das bedeutet, dass das Wasser schneller erwärmt wird und weniger Energie verschwendet wird. * Traditionelle Heizstäbe: Diese benötigen in der Regel länger, um ihre Betriebstemperatur zu erreichen, was zu Energieverlusten führt. 2. Gleichmäßige Wärmeverteilung: * Graphen: Die Wärme wird in Graphen-Heizelementen gleichmäßig über die gesamte Oberfläche verteilt. Dadurch wird verhindert, dass sich Kalkablagerungen bilden und die Effizienz des Elements verringern. * Traditionelle Heizstäbe: Bei Heizstäben konzentriert sich die Wärme oft nur auf bestimmte Bereiche, was zu einer ungleichmäßigen Erwärmung und einer höheren Wahrscheinlichkeit von Kalkablagerungen führt. 3. Längere Lebensdauer: * Graphen: Graphen ist äußerst korrosionsbeständig und langlebig. Es ist weniger anfällig für Schäden durch Kalk oder andere Ablagerungen. * Traditionelle Heizstäbe: Heizstäbe können durch Korrosion und Ablagerungen im Laufe der Zeit an Leistung verlieren und müssen häufiger ersetzt werden. 4. Kompakte Bauweise: * Graphen: Graphen-Heizelemente können sehr dünn und flexibel hergestellt werden. Das ermöglicht kompaktere und effizientere Warmwasserspeicher. * Traditionelle Heizstäbe: Diese sind oft größer und unflexibler, was die Gestaltungsmöglichkeiten einschränkt. 5. Energieeffizienz: * Graphen: Durch die schnelle Aufheizzeit, die gleichmäßige Wärmeverteilung und die lange Lebensdauer sind Graphen-Heizelemente insgesamt energieeffizienter. * Traditionelle Heizstäbe: Aufgrund der oben genannten Faktoren sind sie in der Regel weniger energieeffizient. Zusammenfassend: Obwohl sowohl Graphen-Heizelemente als auch traditionelle Heizstäbe mit Strom betrieben werden, ist die Art und Weise, wie die Wärme erzeugt und übertragen wird, grundlegend unterschiedlich. Die einzigartigen Eigenschaften von Graphen machen es zu einem überlegenen Material für Heizelemente, da es eine schnellere, gleichmäßigere und effizientere Erwärmung ermöglicht. Flexible Heizsteuerung Es ist möglich den Heizstab nur zur Hälfte zu beheizen (vordere oder hintere) Hierzu müssen Sie die Brücke entnehmen und können so den vorderen Teil oder hinteren Teil ansteuern. Top Features Der thermische Wirkungsgrad des Nano-Heizrohrs erreicht 98%. Es spart 30%-40% mehr Strom als herkömmliche elektrische Heizrohre. Doppelter Leckageschutz Keine Magnetfeldbildung Lange Lebensdauer Hydroelektrische Trennung Hygienisch einwandfrei Unbeheizte Totzone nach Gewinde 5cm Leistung auf 50% reduzierbar (ohne Brücke) table { width: 100%; border-collapse: collapse; } thead { display: none; } tr { display: block; margin-bottom: 1em; } td { display: block; text-align: right; padding: 8px; border: 1px solid #ccc; } td::before { content: attr(data-label); float: left; font-weight: bold; } @media (min-width: 600px) { table { display: table; } thead { display: table-header-group; } tr { display: table-row; } td { display: table-cell; text-align: left; } td::before { content: ""; display: none; } } Technische Daten Leistung Gesamtlänge Länge des Heizelements (inkl. Gewinde) Durchmesser Gewinde 2 KW 45cm 39cm 3,5cm 1,5" 3 KW 44cm 38cm 3,5cm 1,5" 3,5 KW 47cm 40cm 5cm 2" 4 KW 47cm 40cm 5cm 2"
Preis: 150.00 € | Versand*: 0.00 €
-
Was sind die wichtigsten Methoden zur Kultivierung von Zellen in der Zellkultur?
Die wichtigsten Methoden zur Kultivierung von Zellen in der Zellkultur sind die Adhäsionskultur, die Suspensionkultur und die 3D-Kultur. In der Adhäsionskultur werden Zellen auf einer festen Oberfläche kultiviert, während sie in der Suspensionkultur frei im Medium schweben. In der 3D-Kultur werden Zellen in einem dreidimensionalen Matrixmaterial kultiviert.
-
Was sind die wichtigsten Schritte bei der Einrichtung und Pflege einer Zellkultur?
Die wichtigsten Schritte bei der Einrichtung und Pflege einer Zellkultur sind die Auswahl des geeigneten Zelltyps, die Vorbereitung des Kulturmediums und die Sterilisation des Arbeitsbereichs und der Geräte. Danach folgt die Aussaat der Zellen in die Kulturschale, die regelmäßige Überprüfung des Wachstums und die regelmäßige Auffrischung des Mediums. Es ist auch wichtig, die Zellen regelmäßig zu passagieren, um ihr Wachstum und ihre Gesundheit zu erhalten.
-
Was sind die gängigsten Anwendungen von Petrischalen in der Mikrobiologie und Zellkultur?
Petrischalen werden hauptsächlich verwendet, um Bakterien, Pilze und andere Mikroorganismen zu kultivieren und zu züchten. Sie dienen auch zur Isolierung und Identifizierung von Bakterienstämmen sowie zur Untersuchung von Antibiotikaempfindlichkeit. In der Zellkultur werden Petrischalen genutzt, um Zellen zu kultivieren, zu vermehren und zu beobachten.
-
Was sind die verschiedenen Methoden zur Messung der Zellviabilität in der Zellkultur?
Die Zellviabilität kann mittels Trypanblau-Exklusion, MTT-Assay oder Durchflusszytometrie gemessen werden. Trypanblau-Exklusion zählt lebende und tote Zellen unter dem Mikroskop. Der MTT-Assay misst die metabolische Aktivität lebender Zellen, während die Durchflusszytometrie die Anzahl lebender Zellen anhand von Fluoreszenzmarkern bestimmt.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.